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Abstract

There is a rapidly growing interest in problem-scale parallelism.
both as a model of animal brains and as a paradigm for VI.SI. Work
at Rochester has concentrated on connectionist models and their
application to vision. This paper lays out a framework for dealing
with such problems. The framework is built around computational
modules, the simplest of which are termed p-units. We develop their
properties and show how they can be applied to a variety of
problems.

To show how the framework can be applied to computational
problems in vision, two specific examples are developed in some
detail. In the first, we describe how spatially distributed data call be
associated with a complex concept. In the second, we discuss the
shape frorn shading problem and show how a global parameter, such
as light source position, interacts with the calculation of a spatially
distributed parameter such as surface orientation.
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1. Introduction

Animal brains do not compute Like a serial computer. Comparauvely slow (millisecond) neural
computing elemenLts with complex, parallel connecuons form a structure which is dramatically
differeit from a high-speed, predominantly serial machine. Much Of' curreni research in the
neurosciences is concerned with tracing out these connections and with discovirmg how they
transfer mnformauon. One purpose of this paper is to suggest how conneCuoRIst theories of the brain
can be used to produce testable, detailed models of interesting behaviors.

Artificial intelligence and articulating cognitive sciences have made great progress by employing
models based on conventional digital computers as theories of intelligent behavior. But a number of
crucial phenomena such as associative memory, priming, perceptual rivalry, and the remarkable
recovery ability of anlimals have not yielded to this treatment. lhe other major goal of this paper is
to lay a foundation for the systematic use of massively parallel connectionist models in the cognitive
sciences, even where these are not yet reducible to physiology.

The connectionist view of brain and behavior is that all encodings of importance in the brain
are in terms of the relative strengths of synapuc connecuons. The fundamental preruse of
connectionism is that individual neurons do not transmit large amounts of symbolic information.
Instead they compute by being appropriately connected to large numbers of similar units. This is in
sharp contrast to the conventional computer model of intelligence prevalent in computter science and
cognitive psychology. While the connecuonist view has a much stronger physiological foundation.
explicit models of behavior have been almost exclisively cast in the framework of computer-like
information processing models. Connectionism has been associated with a pre-computational view
dta knowing de connection structure of a system is all that is required for its understanding.
Recent advances in digitml hardware, vision research, and the theory of computation have caused
renewed interest in highly parallel computational models more in keeping with the connecuonist
paradigm. It now appears to be feasible to construct models which are sinultIneously structurally
and functionally sound.

The fundamental distinction between the conventional and connectionist computing models can
be grasped in the following example. When we see an apple and say the phrase "wormy apple."
some information must be transferred, however indirectly, from the visual system to the speech
system. l'Lther a seqience Of special symbols that denote a wormy apple is transmitted to the speech
system, or there are special connections to the speech command area for the words. Figure I is a
graphic presentation of the two alternatives. '[he path on the right described by double-lined arrows
depicts the situation (as in a computier) where the information that a wormy apple has been seen is
encoded by the visual system and sent as an abstract message (perhaps frequency-coded) to a
general receiver III the Speech system which decodes the message and initiates the appropriate
Speech act. We have not encountered anyone who will defend this model as biologically plausible.

Figure 1: Connectionism vs. Symbolic Encoding.

The only alternative that we have been able to uncover is described by the path with single-
width arrows. This suggestS that there are (indirect) links from the units (cells, columns, centers, or
what-have-you) that recognize an apple to some units responsible for speaking the word. lhe
connecionist model requires only very simple messages (e.g. stimulus strength) io cross a channe!
but puts strong demands on the availability of the right connections.

Over the past few years, we have been exploring the efficacy of formulating detailed models of
intelligent behavior direcly in connectionist terms. This kind of effort is in the tradition of
McCtillogh-Plitts machines and Perceptrons and has long been viewed as a good way of attacking
problems in low-level vision. Until recently, work in this mode has been mainly just suggestive:
examining properties of networks, attempting to match wave-flrms, etc. ihere was hlttle of die
detailed spucificauion of non-trivial hth:ivioral models which characterizes Al and cognitive
psychology. Currently, a great deal of sticcessftl vision work in this laboratory and elsewhere has its
basis in highly parallel models Illanson and Riseman, 1978). One paruicularly fruitful insight for us
has been the correspondence between the so-called Ilough techniques Iliallard, 19I1a) and



4

COIIIIeCL1On1St models. We are conunuing to work on detailed parallel models of visual funcUons
Sl1allard, 19811b; Sabbah, 1981; Ballard and Sabbah, 19811 1nd some examples will be used as
il Lostrauons in this paper.

lint the connecuonist dogma suggests that all mental funCtions, not just low-level vision, can be
well described In terms of richly connected networks trausmitung very simple signals. We have done
some prehunary work II-eldnian, 1980: 19811 on laying oit the advantages and dihliculues in such
an approach. The purpose of this paper is to prepare a solid lbnmdauon fOr the cOIIstrucIUOn of
detailed counectunist models. This involves defining a set of primiuve units, considering some of
their properties, and using these to solve some problems that seem to be prerequisite to any
widespreadt use of connecuonIst models.

The body of this paper has ftr sections. Section Two contains the basic definiuons for a
tractable and biologically plausible neuron-level comptiung unit. Although there is a rich tradituon
of neural modeling research, much of which will be useful to us, our (lefiniltions depart from
standard ones. A pritive unit can have both symbolic annd numerical state, cLan treat Its 1nptitS
non-unilormly, and need not compute a linear funcuon. A particularly important construct Is the
use of groups or "conjunctions" of input connections. Some important special cases and some
simple examples, based on lateral itnhibituon, are presented. -ncapsulatLon techniques are suggested
as a basis for simplifying larger problems.

Section 'liree is concerned with the general compuung abilities of networks of our units. The
crucial point is achieving a single coherent action in a diluse set of units. Winner-take-all (WTA)
networks are introduced as our solution to this problem for single layers. More generally, we define
and study the idea of a stable coalition of units whose mutual reinforcement has the effect of a
single acuon, perception, etc.

Section ['our concentrates on some specific computations and how they can be effectively
performed wi thin the model. We begin with computing simple functions like multplicatuon and
show how general parameters can be treated. Modi ers and nmappings are Us.ed to show how
connections can ff cuvely be treated as dynamic. An extension of tis idea allows us to treat tme-
varying data like speech.

In Secuon IFve we tackle some addiuonal classic problems fIor connecIonisn and apply our
ideas to some more problenms in visual perception. A representiaLon for conjunctive concepts such as
"big blue cube" Is lZid out and applied to the descripuon of complex objects. Finally, as another
Indicatior of the way we intend to proceed, a fairly detailed cunneCtoonist model of shape-from-
shadin~g coImptiuions is presented.

'N
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2. Neuron-lik Coimputing Units

)efinitions

As part of our effort to develop a generally useful framework for connlecuonist theories, we
have developed a standard model of the individual unit. It will tuIn out that a "unit" may be used
to model anything from a small part of a neuron to the external functionality of a major subsystem.
IBut the basic notion of unit is meant to loosely correspond to an information processing model of
our current understanding of neurons. The particular definitions here were chosen to make it easy
to specify deutaled examples of relatively complex behaviors. There is no attempt to be minimal or
mathematically elegant. The various numerical values appearing in the definitions are arbitrary, but
fixed finite bounds play a crucial role in the development. The presentation of the definitions will
be in stages, accompanied by examples. A compact technical specification for reference purposes is
included as Appendix A.

-ach unit is a computational entity comprising

Jil -- a set of discrete states, < 10
p -- a continuous value in [-1,11. called potential (accuracy of 10 digits)
v -- an output value, integers 0 < v < 9

i-- a vector of inputs i1 .... in
and functions from old to new values of these

p <- fRi,p,tq
Ll <- gRip,q)

v <- h(i,p,q)
which we zissunmc, for now, to compute continuously. The form of the f, g, and h functions will
vary, but will generally be restricted to conditionals and functions found on hand calculators. There
ate both biological and computational reasons for allowing units to respond (for example)
logarithmically to their inputs. The "<-" notation is borrowed from the assignment statement of
programming languages. This notation covers both conUnuous and discrete time fbrmulations and
allows us to talk about some issues without any explicit mention of time. Of course, certain other
questions will inherently involve time and computer simulation of any network of units will raise
delIcate qiesions of discretizing time.

I-Units

For some applications, we will be able to use a particularly simple kind of unit whose output v
Is proportional to its potential p (rounded) and which has only one state. In other words

p <- p + /I I- < P < ]I
v = ap-9 Iv = 0...91

where fl, a, 0 are constants

hle p-unit is somewhat like classical linear threshold elements (Perceptrons IMinsky and
lPapert, 19721), but there are several differences. The potential, p, Is a crude form of memory and is
an abstraction of the instantaneous membrane potential that characterizes neurons.

The restriction that output take on small integer values is central to our enterprise. The firing
frequencies of neurons range from a few to a few hundred impulses per second. In tie 1/10 second
needed for basic mental events, there can only be a limited amount of information encoded in
frequencies. The ten output values are an attempt to capture this idea. A more accurate rendering
of neural events would be to allow 100 discrete values with noise or transmission (cf. jSejnowski,
19771). If It turns Out that local "graded" potentials cannot be effccuve!y (uaritiZied, the definitions
will have to he extended to allow local exchange of continuous itnformation. Transmission time is
assiii ed to he iegligible; delay units can be added when transit Utine needs to be taken into)
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One problem with the definiuon above of a p Unit is that its potential does not decay in the
absence of input. [his decay is both a physical property of neutrons and an important computational
feature for our highly parallel models. One compuLtational trick to solve this is to have an inhibitory
connection from the unit back to Itself.

Figure 2: Self-Inhibition and Decay.

We will follow the usual notauon that a connection with a circular Up is inhibitory. More
complex networks will Sometimes be specified by a connecuon table instead of a diagram.
Informally, we idenufy the negative self feedback with an exponential decay it potential which is
mathematically equivalent. We will specify this more carefully below and add the nouon of wsighis
on inptits.

The first step is to elaborate the input vector i in terms of received values, weights, and

modifiers:

V, tj = rj • w' j = .. n

where rj is the value received from a predecessor [r = 0...nj; wj Is a changeable wviht, Unsigned [0
wj <_ II (accuracy of 10 digits), and mj is a synapto-synapuc modifier which is either 0 or 1.

The weights are the only thing in the system which can change with experience. 'hey are
unsigned becausC we do not want a connecuon to change sign. lhe modifier or gate greatly
simplifies niany f our detailed models in Secuon 4. One could, of course, tUe etra units instead,
but the biological evidence for blocking inhibition is solid.

Lateral hiilhifiion, Several Cases

Mutual lateral inhibition is widespread in nature and has been onre of the basic computational
Schemes used in modeling. We will present two examples of how It works to help aid in inttIiuon as
well as to illustrate the notation. The basic situauon Is symmetric cnfigurations of' p-ntits which
muttially inhibit one another. Time is broken into discrete intervas for these examples. The
examples are too simple to be realisuc, but do contain ideas which we will employ repeatedly.

FExamlple 2: Iwo P-Units Synmmetrically Connected

Sippose v 10P, w1 = .1, w2 = .05(-), It is easier to use P = 10p internally and round

P1(t+ 1) = P(t) + r1 - (.5)r 2  rj = received

v = round (P) 10..91

Referring to Figure 3, Suppose the initial input to the unit A. I is 6, then 2 per itie step, and the
initial input to I.1 is 5, then 2 per time step.

Figure 3: Two 1i-Units Symmetrically Connected, with Table.

This system will stabilize to the side of the larger of two instantaneous inputs.

It is Interesting to also look at a continuois version of this example. [he conunuotis
approximatiJon to the defining etluations for Example 2 can be written:

P'1  = 2 - .512

P' = 2 - ,511
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where IPl is ten umes the potential of A and P2 of It and where P is the derivative of 1, with
respect to time. This system of linear differential equations can be solved by standard techniques for
die initial conditions Pi = 6, P2 = 5. The solutions are

P1  = 4 + 1/2e l/2t 3/2e -1/2t

12 = 4 - 1 2e/2t - 31. -l/2t

First note that the last term in each equation is a negative exponential and can be neglected.
The resutiUng relation indicates clearly the rapid decay of P2 and rise of Il. Linear systems theory
is only an approximation to our models which in general are nonlinear. For example, the above
equations do not take into account the fact that the potentials saturate. Nonetheless, the theory can
be an important aid in undersunding some properties of our networks.

Examle 3: Two Symmetric Coalitions of 2-Units

v "lop

w2 = 05
w3 = .05(-)
P(t+1) = P(t) + r, + .5r2 - .5r3
V = round(P)
A,C start at 6; IM,) at 5;
A,B,C,l) have no external input for t01

Figure 4: Two Symmetric Coalitions of 2-Units, with Trable.

'l'hTis system converges faster than the previous example. The idea here is that units A and C
form a "coalition" with mutually reinforcing connections. The competing units are A vs. 11 and C
vs. ). Fxample 3 is die smallest network depicting what we believe to be the basic mode of
operation in connectionist systems. One can imagine, e.g., that C and I) are competing phonemes
and that A and 11 are words which incorporate C and D, respectively.

We have already described the graphical notaton which will often be used in examples. The
alternative method is to describe, for each unit, the outgoing connections to other units in tabular
form. Each outgoing vj (only one for basic units) will have a set of entries of the form

((receiving unit>.(index>,( ± >,(type>)

where any of the last three constructs can be omitted and given its default value. The <±> Field
specifies whether the link is excitatory (+) or inhibitory (-) and defaults to +. The (index> is the
input index j in r at the receiving end. This index can be used for specifying different weights as
in the examples above. Indexed inputs also allow for functionally different use of vario(s inputs and
many of our examples will exploit this feature. The (type> is either normal, modifier (i), or
learning (x), de default being normal.

For example, the diagram of Example 2 could be replaced by the table:SA: 11.2,-

ZI

B: A.2, -

Z2
YI: A,1

Y2: 1.2

4i
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where units labeled Y, Z, etc., designate unnamed sources and sinks.

Compeung coalitions of units will be the organizing principle behind most of our models.
Consider the two alternative readings of the Necker cube shown in ligure 5. At each level of
visual processing, there aie mutually contradictory units represenung alternative possibilities. The
dashed lines denote the boundaries of coalitions which embody the alternauve interpretations f the
image. A number of interesung phenomena (e.g. priming, perceptual rivalry, subjective contour)
find natural expression in this formalism. We are engaged in an ongoing effort iSabbah, 1981;
lallard, 1981bl to model as much of visual processing as possible within the connectionist
framework. '[his paper is largely an exercise in developing standard mechanisms for this and other
specific modeling projects.

Figure 5: Necker Cube.

Q-Units uiid Compound Units

Another usefl special case arises when one suppresses the numerical potential, p, and relies
upon the finite-state set fqll for modeling. If we also identify each input Of i wiffi a separate named
input signal, we can get classical finite automata. A simple example would be a unit that could be
started or stopped from firing.

One could describe de behavior of ths unit by a table, with rows corresponding to states in

{qJ and columns to possible inputs, e.g.,

i, (start) i2 (sop)

Firing Firing Ntill
Null liring Null

The table above is a tabular presentation of our simplified generic function, g = g(i,q) which
describes state changes. In a similar manner, the computatuon v (- h(i,pq) could be simplified to v
< - h(q), e.g.,

v <- if q = Firing then 6 else 0.
This could also be added to the table above.

We have already employed a variety of graphical and texttial descriptions of units and
collections of them. The paper will continue to use different representations, but these are all
instances of the general definition. One of the most powerful techniques eml)loyed will be
encapsulation and abstraction of a subnetwork by an individual unit. For example, assume that
some system had separate motor abilities ibr turning left and turning right (e.g. fins). We could use
two start-stop units to model a turn-unit.

Figure 6: A Turn Unit.

['here are two important points. The compound unit here has two distinct outputs, where basic
units have only one (which can branch, of course). In general, compound Units will differ from
basic ones only in that they can have several disunct outputs.

The main point of this example is that the turn-unit can be described abstractly, independent of
the details of how it is built. lor example, using the tabular conventions described above,

" i
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Left Right Values Output

a gauche a gauche a droit V1 =7, V2 =0

a droit a gauche a droir Vi =0, V2 =8

where the right-going output being larger than the left could mean that we have a right-inned
robot. here is a great deal more that must be said about the use of states and symbolic input
names, about mutiple sitnultaneous inputs, etc., but the idea of describing the external behavior of
a system only in enough detail for the task at hand is at the core or our enterprise. This is one of
tie few ways known of coping with the complexity of the magnitude needed for serious modeling
of biological functions. It is not strictly necessary that the same formalism be used at each level of
functional abstraction and, in die long run, we may need to employ a wide range of models. For
example, for certain purposes une might like to expand our units in terms of compartmental models

'of neurons like those of tPerkel, 19791. The advantage of' keeping within the same formalism is that
we preserve iutiuon, mathemnaucs, and the ability to Use eXisUng simulation programs.

The idea of encapsulation used in compound units is vital, btit one should not think that only a
Small number of uMS are involved in output; rather, only a small fraction of the Units in the
subsystem are outpuLt units. Some simple biological systems (such as in leech IStntit tal., 19781 or
lobster iWarshaw and I lartline, 19761) might be able to be completely modeled on the above scale.

liut we are more concerned here with complex systems like human vision, etc. Fur this purpose we
will need yet more abstracuon techniques (see below). In htiman vision even loose coupling will
involve a large iiumber of connecuons between subsystems, e.g. vestibular and vision.

Units Inmploying 1) and q

It will already have occurred to the reader that a iiumerical value, like our p. would be useful
fbr modeling the amioun( of Currung to the let0 or right in the last example. It appears to be
generally truC that a single numerical valtie and a small set of discrete states combine to provide a
power fil yet tractable Modeling Lnit. tlhis is one reason laL the cuIrrent deli iritions were chosen.
Another reason is that the ixed unit seems to be a partctUlarly convenient way of modeling the
information processing behavior of neurons, as generally described. he discrete states enable one to
model the eff'cts in neurons of ab~normal chemical environment%, fatigue, etc. n)ie example of a

unit emlloying both p and t noim-trivially Is the I'ollowing crude neuron model. l his model IS
coiicerned with saturation aid assumCs that the output strength, v, Is something like average firing
'reluency. It Is not a nmodel of individual action potentials and refractory periods.

We suppose the distinct states of the unit q E {normal, recover}. In normmal state the unit
behaves like a p-u nit, btt while it is recoverng It ignores inputs. the following table capturLs almost
all of this behavior.

-. lp_.9 p>.9 Output Value

normal p<- p+Si p<- -p/ v <- a p - q
(incomplete) recover

recover normal <impossible> v <- 0

I lere we have die change from one state to de other depending on the value of the potential,
p, rader tan On spcCilic inputs. The recovering State is alSo charactcrizCd by the potenual being set
negatuve. The tinspecilied isue is what determines the durauon of' the recovering State--there are
several possibiliucs. One is an explicit dishabittiation signal like those in Kandtcl's experimentLs
IKandel, 19761. Anuder would be to have the unit sum inputS ii the recovering state as well. tlhe
reader might want to consider how to add tlis to the L ble.

A dird possibility, which we will Use frequendy, is to assume -hat the potental, p, decays
toward zero (from txth dirctuons) unless explicitly changed. -xample I showed how this implitLt

decay p < p0c-kt can be l)delced by self inhibition. In this case, thu dca.iy kcomutarit. k, woild
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determine the length of tile recovery period.

)isjunctive Firing Conditions

It is both computationally efficient and biologically realisutc to allow a unit to respond to one of
a number of alternauve conditions. One way to View this Is to imagine ihe unit having "dendrites"
each of which depicts an alternative enabling condition.

Figure 7. A Unit with I)isjunctive Inputs.

II terms of our formalism, this could be described in a variety of ways. One of thle simplest is
to define the potential in terms of the maximum of the three separate cOMputaions, e.g..

p <- p + Max(i 1 + 2, 13 +i 4 , i5 +i 6 -i7 )

It dues not seem iunrea.sonable (given current data) to Inodel the Firing rate of a unit as the
maxunom of the rates at Its active sites. Units whose potenual is changed according to ie
maximum of a set of algebraic sLIms will occur frequently In our specific models.

One could replace this unit with three simple p-Units plus a maximtim 1u1t and get a similar
effect. (Note that de potentials of the p-tinits wotldn't be etjual.) But It appears to be easier to
understaind and analyze systems of units that describe Intuitively coherent coilpitiUtious. \n(other
reason for employing disjunctive units is that they appear to be witde-spread in nature. 'he firing of
a neuron depends, in many cases, on local spatIo-temporal stimmaion involving only a small part or
the Ieuron', surface. So-called dendritic spikes transmit the acti vauoi to the lest of die c;ell. It :ilS
turns out that Inhibitory inputs sometunes block such internal signals that are ipstream of the potn
of inhil)ition, rather than just sum with them. It Is possibie to model a dend ritic tree with inhihitory
blocking InpuLts all wi tiii our formalism for a single unit, or as a simple network. One can rnodci
each section of the dendriuc tree as a tinit which sc'ids output '.o the unit body unless It is blocked
by a modifier (Inr) input, corresponding 'o blocking inhibition in neurons. One advantage of
keeping the processing power of otr abstract unit close to that of a neuron is that it helps nlorm
our counting argutmenrs. When we attempt to model a particular runction (e.g. stereopsis), we
expect to require that. the nuIlbTer of' units and conJInCLtIOns a1s Well as the eXeCkitlin Limle reLlred
by die model are plausible.

Coijiictive Connections

The max-of sum unit Is Ule continiuoLis analog of a logical OR-of-AN) (disjuntUve norrmal
florm) unit and we will soioetimes Use the latter as an approximate version of the fflincr. 11e OR-
of-ANI) unit corresponding to Figure 7 is:

p <- p + a OR (11&12 , i3&14 , i5&i6 &(not 17 ))

rhis formulaton stresses die importance that nearby spatial connections all be firing before the
potential is affectcd. H ence, in the above example, 13 and 14 make a conjunctive connet-cOon With the
init.

Change

I-or our purposes, it is useful to have all the adaptability of networks be confined to changes in
weights. While there is known to be some growth of new connections :n adults, it does not appear
to be fast or extensive enough to play a major role in learning. Ior techiMcal reasons, we coisider
very local growth or decay of connections to be changes in existing conectUon patterns. Obviously,
models concerned witd developing systems would need a richer notion of change In corIneCLU01ist
networks (ef. Jvonder Malsburg and Willshaw, 19771). l.earning and change will nlot be treated
technically in this paper, but the definitions are included for completeness. We provide each 1u1t
with a change finction c:

<j - ,,(i~p,qXi)
~~/4

1'
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where u is the intermediate-term memory vct;or, i, p. and q are as always, and x is an additional
SIngle intIeger input (0 < X ( 9) which1 capLureS the notion (if the iniportance and vaILue Of thV
cuirenit behavior. 111Uslan.7aneOLis eSUIlish1ment of lunIg-termI miemory I whicli doe:s Iiot Seem pla~isilble)
would be equII~ial to having Ai = w. We are assoung that the consolidation of long-term changes
Is ;I separate process.

We assumle that important, favorable or Unfavorable, behaviorS canl give rise to faIster learning.
The ratiale tfor thiis is given in Iedn,1980; 19811, which also lays oL tri inally Uir views oni
how short- and long-term learning could occur1 in c;onnection-isl networks. We arc working on a
more technical presenL-itiin of' our model of' change along the lines of' this paper. Obviously
enough, a plausible model of learning and memory is a prereCLItisite !*or an7y SMriOtS Sc~enufic tise of
L:IIcnnecuoniISrn. BUt We have founrd that an exarni nation Of netLworks For carrying out the basic
biilding bli cks IS already enIough for one report.

ME.U
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3. Networks

Our general idea of temporal behavior in networks is that of rela.xaution. The independent
inputS together with the vaiiuuts irter-Unt connections are sufficient to cause the networks to behave
in an appropriate manner; each unit Should converge to a potential value between - I and 1. MIch
work has buen done oi relaxation, frorn classical Gauss-Sidel iterations to more modern applications
in vision (e.g. IRosenfeld et al., 1976; Marr and Poggao 1976; Prager 1980; and linton, 19801). With
a few excepuons, previLouS work has assumed linear behavior (or linear with a threshold). As one of
the eXceptionls, Prager Used a non-linear model and noted that It enabled him to use more
complicated updaung condituons than those in a linear system. Our model also breaks with the
lnear traditions in its tuse of conjunctUve connections and state tables. While we stll use linear
approximations to analyze the stability of the system, the non-linear tutntS are closer to actual
ieULrons in behavior and allow Vast simplifications in network design.

Winier-Take-All Networks

A very general problem that arises in any distrb uted computing sittiaion is how to get the
entire systerri to make a decision (or perform a coherenlt acuon, etc.). This iS a particularly important
issue for the current nodel becau.se of its restricutons on Information flow and becautLse of the almost
linear natuIre of the p-unLi.S Used In many of our specific examples. One way to deal with the Isstie
of coherent decisions in a connecuonist framework Is to introdtice winrner-take-all ( WIA) networks,
which have the property that only the unit with the highest potentia! (anong a set of contenders)
will have otitptt above zero after some settling time. lfiological!y necessary examples of this
behavior abound; ranging from turning left or right, through fight-or-flight responses, to
Interpretations of ami)igiLois words and images.

There are a ntmber of' ways to construct WIA networks from the tnits described above. We
will discuss several of these, both because of the importance of WIA capabilities and becaUse it :s
the first non-trivial prol)lem treated here. The quesuon of idenucal values (ties) is an important
one, but will he deferired for a few paragraphs. Our first example of' a WIA network will operate
in one Unit step for a set Of contenders each of whom can read the potenual of' all of the others.
(The fan ii/(uiot of neurons is al)oti 1,000-10,000.) 1 Lach LiiU Iin the nt:twork computes its new
p- tcntial accOrding to the rule:

p <- if p > max(i. .1) then p else 0.

That Is, each unit lsetS itself to zero if it knows of a higher Input. This is fast and simple, but
probably a little too complex to be plausible as the behavior of a single neuron. '[ here is a standard
trick (apparcitly widely Used by nature) to convert this into a more plausible scieme. We replace
each Unlit af!)(ve Wih two LiniLs; oIe computes the maximum of the comnpeti tor's inipts anti Ihibits
the ouier. I his Is shown In lI-gUre S.

Figure 8: Paired Units for Max W[A.

There are a number of remarks in order. It is not biologically tnreasonable to view the firing
rate of a neurol to be the maximtum )f the rates of Its separate sItes of spauo-tenfiporal summation.
The Lircuit above can be strerigdnened by adufing a reverse inhibitory link, or one coUld use a
modifier oin the Outtput, etc. Obviously one could have a WTA layer thdlt got npuiS from some set
of coIIlptittirs and settleCL to a winner when triggered to do so by some downstrcani network. This
is an exact analogy of strobing an output buffer in a convent:onal comptuter. Another set of
standard ideas (here from theorcutal computer science) enables us to bui!d WIA ntworks among
sets of contenders larger than the allowable fan-in of units. We jtsu arrange dte competitors in a
tournament tree jAho, Ilopcrol't, and Ulmn, 19741 ard have the winners at each level play off.
The tone reqiired is Ot: height of the tree which is ti logarithm (to the base fan iin) of the size of
tie set of Lcontenders and is small for all realistic sittiuons.

The tuestion of" ties remains to be consideretd. Since we are assuIming only a limited range of
Outputt values, qJuite a few contenders might appear to be ett1, oa. Depending on how the WTIA
netwoirk is being cinpli)yetf, one tiight wilint SCvCra dihff:rent w;ys Of treating this sttituon. A



conilion idea in computer science is to order the Units in some way and have the first in order win
iI tihe case of ties. This is easy to implement by havine Units turn off i a predecessor is higher or
e(ItIal to itself. Iii some situaLions, a random choice might be appropriate. There is reason to believe
that essentially random effects break ties in real neural networks. Randomness can ble achieved iu
our scheme, e.g., by adding a randomly changing hierarchy, but we will not be using random
selecuon in this paper.

There are two more basic ways of treating ties that deserve menuon. One could try to resolve
Lies by looking ever more closely at the values of potential among contenders. This would amount
to having "rounds" of com)eution. lirst, all Units whose high-order digit was sub-maximal would
drop outI. Then there would be a play-off based on die second digit, ec. this could be combined
with the tournament tree, btt, in the end, one sutll might have to contend with ties. There do seem
to be situations where some fine-tuning is called for, but the most Comnion sMittiatun appears to be
(uJiLe different.

Recall that the purpose of WTA networks was to idenufy a clear winner out of a set of
contending actions, perceptions, etc. Both in nattire and in our models, this rarely occurs in the
form of pure compeution among a single layer of contenders. For example, the choice of which
word should be asstirned to have been heard is Influenced by phonemic, semantic, contextual and
general considerations. We believe that WTA type structures exist, bit that they are normally part
of coalitions spanning many layers. lFes in a single W'IA layer do riot require speclic resoluuon
because the coalition irnteracuon normally will produce a Uniqtie overall winner. The idea of
coalitons among members of different compeUng layers was discLss d brie fy in Ixample 3 and will
receive a great (teal of attention below.

Mult-layer coalition networks could employ MAX-based WTA circuits, but it often seems
more appropriate to algebraically combine the outputs of uiLS. lor this reason, and to Lie in with
some Important related work, we will now consider W I'A circuits based primarily on p-units (which
algebraically solo their inputs).

lirst we present an abstract solution of the WTA problem which ignores qumariuzation and
bounds. Suppose we have a symmetric network of n + I p-units, each of which equally inhibits all

4i- the others, i.e.,
p (- p - 1/10n Xv + ? '(v = lop)

If we add one extra unit, AVI- which computes the average of all active (non-zero) otitputs and
leeds It (with + polarity) to all the Units, we get the desired subnetwork.

lip . p <- p - 1/10n IXvj + 1/10b Xv
sj k b

where b is the number of non-zero inputs to AVE.

This network lhas tile required behavior because each unit has its poteniUal increased by the
difference betwcen the average of all oItptits and the average of all but its own output. Units whose
output is above average will increase while the Others decrease. ..,s LIts go to zero and drop otit.
more units go below average. One instance of this would be when a suLnetwOrk with all p, nitally

iequal got outside signals which favored one unit. Notice that AVIE is not a p-tIoL, since it counlts
non-zero inputs.

A possible problem arises if one takes saturation into accoulnt. If two UiniLs were both near
saturation, they might easily both reach saturation before the WFIA network settled down. For any
network there will be a difference so small that the intent is that the two values are considered
identical. For diflCences larger than this, One can dlesign tile WIA network to converge slowly
enough to prevent multiple tllelia ilnilts from reaching satuirat i. INis IS accoimplished by giving
less weight to the positive Input from the AVIt unit. stll assuming that the utput can have

II4
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coltiUitiOus vaILes.

QUanllUAtion Of output values (here 0 .9) adds interesung addiuonal issues. For a Sllfficiently
large network, ten distinct aLues vWill not be enough to resolve the difference )etwteen the two
averages. lhcre are a variety of comlUitiuonal tricks to exploit the limited dynamic range available.
Some of' these, like totu nament trees and successive digit comparisons, were menuoned in tle
discussion (fl' ties. HlLut the restricuon to simple signals Is at the heart of our approach and should not
be evaded. We should not build models in which WTA networks involve a large ntmbier of
alternauves nor Should we expect very delicate decisions to be made by a single compeUtve
network.

The Question of )elicacy

One problem with previous neural modeling attempts is that the circitLs proposed were
unnaturally delicate (Lnstable). Siall changes in parameter valtieS would catise the networks to
oscillate or converge to incorrect answers. We will have to be carefli not to fall into this trap, but
would like to avoid detailed analysis of each paruicular model for delicacy. What appears to be
reqtired are some building blocks and coml)inatio rules that preserve the dtsired properues. For
example, the WFA sIibnetworks of the last example will not oscillate in the absence of oscillating
inpLits. Ihis is also true of any symmetric mutually inhibitory sil)network. [his IS intuiively clear
and could be proven rigorously under a variety of assumptions (Cf. IGrossberg. 19801).

One usefuil principle is the employment of lower-bound and upper-bound Cells to keep the total
activity ofl a network within hotnds. The idea is an extension of the AVE cell used in the WTA
example. Suppose that we add two extra units, 1.11 and ULI, to a network which has coordinated
output. 'he 1.13 cell compares die total (sum) activity of the units of the network with a lower
bound and sends positive acuvation uniformly to all members if the sum Is too low. I'he UII cell
inhibits all units etLtially if the sum of actIvity is too high. Nouce that I.II and UII can be
paranieters set 1'r11 outside the network. Under a wide range of conditions (but not all), tile I.1-
_llI augmented network can be designed to preserve order rulauonships among the OLLputs Vj of the

original network while keeping the sum between .it and I1.

We will often assume that I.h-Ul pairs are used to keep the stIm of ouitptis from a network
within a given range. ['hls same mechanism also goes far towards eliminating the twin perils of
urniform saturation and uniformTI silcet which can easily arise in muttial inhibition networks. Thus
we will often be able to reason a btl the computation of a network assuming that It stays acUVe
and bounded. We also require that indivitial uniLs be viewed as part of different subnetworks,
wILch may be stutultaneously active. The general Issue of interacung stibnetworks entails nothing
less than die whole enterprise, but we can tackle the qutestion of hounds. If we view each ottput
value v in a set of networks comprising n-utnis as the axis of an n-dimensional space, the UI and
li celfs correspond to I)ounding hyper-planes in this space. The simultaneous Imposition of these

condiuons defines a convex hull, In which the solutiton must lie. (Geoff ILnton pointed this out.)
'This could turn out to have singulartues if some simultaneous soltitions are impossible, bUt this
condition can be checked for in advance.

One problem with the AVI and U13-II soluiuons is that they assume that these umnis can
compuIte all of the activity of a network. As we have nienuoned, tle saturation of potential and
lanuted daia transfer rate mean that only an approximation is possible for networks of significant
size. Other results In die literatUre (e.g. [Grossberg, 19801) have similar himitations. We will have to
place less relianc on precise calculations by large networks and more on cooperative comptitation.

Stuhle Coalitions

UIor a massivcly parallel systemi like we are envisioning to actually make a decision (or do
soiiing), there will have to be states in which soniC activity strongly dominates. We have shown
some simple Iinstances of this, in I xarnples 2 and 3 and the WIA network. But the general idea is
didi i very large comnplcx suibsysici ni.t stabiue, e.g. t a lfixed interpreutulli (of viStIal ]inptt.

'I7
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The way we believe this to happen is through mIulually reinforcing coalitions which insLantancoLsly
dominate all rival activity. lhe Sirmplust case of this is Example 3, where the two units A and iiB
form a coalition which suppresses C and I). Phenomenologically, the two rendetnngs of the Nucker
Cube i I Figure 5 can be viewed as alternative stable coalitions. Formally, 'a coalition will he called
stable whlen lthe ou(pl( of all of its merferlcr is ronl-dCLrea ing.

What can we say about the conditions Utnder which coalitions will become and remain stable?
We will begin informally with an almost trivial condition. Consider a set of units ja,b,... which we
wish to examine as a possible coalition, v,. IFor now, we assume that the units in w are all p-units
and are in the non-saturated range and have no decay. 'hus for each ti In 7T,

p(I) <- p(u) + Fxc - lnh,

where FxC is the weighted SLIm of excitatory ilputs and Inh iS tile weighted sum of inhibitory
inpLIuS. Now suppose that 'xcLinW, tie excitation from the coalition 7T only, were greater than [NIl,
the largest possible inhibition receivable by u, for each Unit I in -FT, i.e..

(SC) V U E w' Ixcji7 > INII

Then it follows that

V ii E ; p(u) <- p(u).+ 8 where 8 > 0.

That is, the potential of every unit in the coalition will increase. This is not only true
instantaneously, but remains true as long as nothing external changes (we are ignoring state change,
saturation, and decay). This is because Excl'r continues to increase (recursively) as the potential of
the members of ir increases. Taking saturation into account adds no new problems: if all of tLhe
uitS in 17 are saturated, the change, 8, will be zero, btit the coalition will remain stable.

''le condition that the excitation from other coalition members alone, Exclir, be greater than
any possible inhlbiton INII for each unit may appear to be too strong to be useful. Observe first
that INII is directly computable from the description of the uit: It IS dhe largest negative weighted
SLIm possible. If inhibition in our networks is mtLLal, tile tipper-bound possible after a fixed uime i',

INIIT, will depend on the current value of potential Il each unit u. [he simplest case of this is
when two units are "deadly rivals"--each gets all Its Inhibition from the other, In such cases, it
may well be l'eas ble to show that after some tuC r, tile stable calitloi condition will hold (iln Oe
absence of decay, faigue, and changes external to the network).

'There are a number iof interesung properues of the stable coaliuon principle. Itrst notice that it
does not prohibit multiple stable coahuons nor single coalitions which contain units which mutually
inhibit one anothcr (although excessive mtttual inhibi .on is precluded). If the unitLs in the coalion
had non-iero decay, he coalition excitation :Lxcf WOUld have i )exceed both INil and decay for
the coalitiin to be stable. We suppose tat a stable coalition yields control when Its input elements
change (ftaugue and explicit resets are also feasible). l0 model coalitions with changeable inputs, we
could add boundary elements, whose condtiuon was

EI'cl, + Inptit > INII

and which could (isrupt the coaltuon if its Inptit went too low.

An Artificial Exampllle

A Ih A cialhtlons Of unts needed to model biologically interesting fCunctions will be large and

heterogeneous. We do not yet have mathemaucal reslts that enable uis to charactritc die behavior
of general coalitions. What we can do now is develop an artifilcal example (if a coalition and
establish the crtiLcal aspects oh' its behavior. '['his has proven to be useful to tIS both ill aiding
intluiLion and in .onstraiung the choice of weights for real models. (Paul Shields Oh' U. IOledo and
Stanford provi(led the basic analysis.)

Iic aruficial coalition consists of M + 1 rows, each of which has N + I utlnits which compete by
p. nuitual lateral ihiithILoMi (I:igiire 9). We are assinilihig here thi e;1bh tirnt ll hatve0 potential alnd
output V )fc ulili teil lange illMd ;icLiraLy alid thie u)tpLll IN Xact,!y the potl lla. I ls iakcs it
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possi)le to express the compeuuon in a row as a strictly linear rule:

X11 <- ×ran- [t ×nI + Coalition Support

Iigure 9: Artficially Symmetric Coalition StucttUre

If we further assume that each coalition is exactly a column anti provides positive support
proporuonal to the sum of its members, the rule becomes

()1X11 <- Xin + azXXn - flXXmj

Under all these assumptions (*) defines a linear transformaUon, T, on the collection of values
XM oviewed as a "vector" in the sense of linear algebra. [his transformation is sufficiendy regular
that we can characterize all of its eigenvalues and eigen "vectors." Recall that an eigenvalue, X. antd
the associated "vector" X have the property that TX = XX. Any such coalition structure, X, will be
stable because repeated applicauons of the relaxauon rule (0) will just muluply every element
repeatedly by the related A. What Is interesung here is that the configurauions of Xmnn which have
this property are easy to discuss in terms of our model.

Suppose that Xmni were such that each column had every one of its elements equal. This might
be a good resting sUite for the struicture because any row would provide the same answer as to the
relative strengths of the various possibiliues. '[he rile (*) becomes:

Xni <- X11 + arM'Xmn [ii xlj
j 

i

because all M other elemcnts of its column are equal to Xmn. If we !'urther assume that each row

has the sum of all its elements equtal to zero, the remaining summation above must be equal to -

X1n11 and We get:

Xtll <- X111 + a'M'Xmn + flXrn

or
X1ln0 <- (1 + aM + J1)Xmn

which says that (I + aM + X?) = A1 is an eigenvalue for F, working on "vectors" with constant
columns anid zero row-stims. The condiuon of a zero SuIM for a row captures the idea of
compeutton (Iuite nicely; the fact that this requires negauve values to be transmitted Is not a serious
problem. It o, the aWssumptions of unbounded scale and accuracy that limit the applicauon of these
resuilts even in thle case of' ptirely row-coIlumn coalition strLUctres.

The fact that constant-column, zero-row-sum configurtions are stable for tils structure is
important, but there are several other points to be mate. Nouce that several columns could have
the same constant value; the problem of Ues cannot be resolved by such a, unilorM system. [here
are also other eigenvalues and "vectors" which do not correspond to desirable states of the system.
Ihese are:

4
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IE-igucvahne "vector" X

I + aM - N matrix of all I
- a - /IN rows equal, coILmn-sullm Zero

1 - a + /1 row-sum and column-sums all zero

B~y comlpuong the mulplicity of the four eigenvalues, one can show that the total multiplicity
is (N + I)(M + I), so that there are no other cigenvalUes. The critical point is that powers of a linear
system like Y will converge io the direction specified by Its largest t:igenvalue. If we make sure to
choose a and 11 so that X + = I + aM + 1i is the largest elgenvalue, then repetitions of (*) will
converge to the desired constant-column zero-row-sum state. This requires (for a, /I positive) that

I + aM + /1 > a + /IN -1

or

(") 2 > /IN - aM + (a - 1).

We can ignore a - #i which is a small fracuon. Recall that /1 is the weight given to the compeUtors
and a the weight given to collaborators. Condition (**) states that if the coaliions are given
adequate weight, the system Will Settle into a st ie with uniform columns (coaliuois). The obvious
choice of /I = I/N and a = I/M comfortably nieeLs condiuon (**). The problem that occurs if /
is tOO small is that mutual Inhibition will have no effect and the system will converge to the state
where all columns have their initial average value. The relative importance of competition and
collaboration will be a crucial part of tie detailed specification of any model. There appears to be
no reason that discrete values, bounded ranges and overlapping coalitions should change the basic
character of this result, but the detailed analysis of a realisuc coahuon stricture for its convergence
properties aP)ears uJ be very difficult. More generally, there will need to be ways 0' assessing tile
impact of Finite bounds and discrete ranges on systems whose continuous approximation is
understood, a classic problem in numerical analysis.

I -

i



4. I)istributed (Massively Connected) Computing

The main restriction imposed by the connectionist paradigm is that no symbolic information is
pa.SSel from unit to unit. This restriction makes it difficult to employ standard computauonal
devices like parameterized functions. In this section, we present connccuonist solutions to a variety
of cont,.taUional problems.

Using a Unit to Represent a Value

A cornerstone of our approach is the dedication of a separate unit to each value of each
parameter of interest, which we term the urut/value principle. We will show how to compute using
unitt/value networks and present arguments that the number of units required is not unreasonable.
In this representation the output may be thought of as a confidence measure. If a unit representing
depth = 2 saturatCes then the network is expressing confidence that the distance of some object from

te retina is two dcpdi hulmLS. There is much neurophysiological evidence to suggest tinit/valtie
organizations In less abstract cortical organizations. Examples are edge sensItive ti nuts ft lubel and
Wiesel, 19791 und peucCptual color units IZeki, 19801, which are relatively insensitive to illumination
spectra. I"xprCIienLS with cortical motor control in the monkey anti cat lWuru and Albano, 19801
indirectly hint at a uiat/value organizaton. Our hypothesis is that the unit/value organization is
widespread, and is a fundamental design principle.

Although many physical neurons do seem to follow the unit/value rule and respond according
Ut die reliability of a particular configuration, there are also other neurons whose output represents
dte range of some parameter, and apparently some units whose firing frequency reflects both range
and strength inl.frmation. Both of the latter types can be accommodatetl within our definition of a
tnit, but we will employ only iii/value cells In the remainder of this paper.

In the unt./valute lepresCntaton, much compuLation is done by table look-tip. Previous ideas
such as WTA networks, Scaling networks, and deadly rivals still apply; they describe die dynamic
behavior of die table.,I lthe we diSLuSS the implicauons of the tabl~s themselves, which are at tile
core of what we me:mn by compI}uting with connections.

As a , imple example, let us consider the multiplication of two variables, i.e., z = xy. In the
tit/value forrmalism there will be units for every value of x and y that is important. Appropriate

4. pairs of thic will make a w.uinection with another unit cell representing a specific value for die
product. I"guzC 10 shuws this for a small set of units representing values for x antd y. Notice that
the confidence (expressed its otitput value) dat a particular prodtict is an answer is a linear function
of the maxinitiu of the stints of the confidenlces of Its two inptltS. Note that the ntifmbler of xy units
need nut e as ldfge as the prodtict of die number of x and y inputs for the tabl: to be Usefll.
Iurthermore, the x and y inputs make conjunctive connections with their z-unit.

Figure 10: Computing with Table Look-Up Units.

Moolifiers and Ma))ings

['he ideat o1 uinituon tables can be extended through the use of variable muppings. In our
definition ()C die uouip pitational Unit, we included a binary modifier, m, as an option on every
connection. As the definition specifies, if the modifier associated with a connection is zero, the value
v sent along that connection is ignored. There is considerable evidence in nature for synapses on
synapses and the modifiers add greatly to the computational simplicity of our networks. Let us start
with an Initial informal cxample of the use of modifiers and mappings. Suppose you wanted to
ignore the teleiphme in your office, but answer it at home. One intuitive way to do this is shown by
ligure 11.

Figure 11: Modifier (m) on a Connection.
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The circular connection between links denotes a binary modifier. You probably don't want to
inhibit your own intuation of phone calls from Ie office, just the !ink between tile ring and your
action. Of course, there are ways of encoding this without using modifiers, but it is easy to see how
modifiers permit whole behavior patterns to depend on a state change. By convenUon, we will
asStmte that a niodifier blucki the connection when its source unit is active. "l'echnically, m <- if v
= 0 then I else 0, where v is the output value of the unit which is the source of m.

A slightly more complex use of mappings is for disjunctions. Suppose that one has a model of
grass as green except in California where it is brown (golden).

Figure 12. Grass is Green Connection Modified by California.

I [ere we can see that grass and green are potential members of a coalition (can reinforce one
another) except when the link is blocked. This use is sumilar to the cancellation link of 1Fahlman,
19791 and gives a crude ilea of how context can effect perception In our models. Note that in

, - .igures I I and 12 we are using a shorthand notauon. A modifier touching a double-ended arrow
actually blocks two connections. (Sometimes we also omit the arrowheads when connection is
double-ended.)

Mappings can also be used to select among a number of possible values. Consider the example
of the relation between depth, physical size, and rtunal size of a circle. (For now, assume that the
circle is centered on and orthogonl to the line of sight, that the focus is fixed, etc.) I'hen there is a
fixed relaton between the size of retinal image and tle size of the physical circle ftr any given
depth. That is, each depth specifies a mapping from reunal to physical size, i.e,,

Figure 13: l)cpth Network.

ifere we suppos.e the scales for depth and the two sizes are chosen so that unit depth means the
same numerical size. If we knew the depth of the object (by touch, context, or nagic) we would
know its physical size. 'hte network above allows reunal size 2 to reinforce physical size 2 when
depth = I but inhibits this connection for all other depths. Similarly, at depth 3, we should
interpret rtittnal size 2 as physical size 8, and inhibit other Interpretauons. Several remarks are in
order. I'irst, notice that this network implements a fuLction phys = f(ret,dep) that maps from
reunal size and depth to physical size, providing an example of how to replace functions with
parameters by mappings. [For the simple case of looking at one olbjuc' perpendicular to the line of
sight, there will be one consistent coaliuon of units which will be stable. The network does
something more, antd this is crucial to our enterprisc; the network can represen the consistency
relation R among tht: three quanuutes: depth, retinal size, and physical size. It enibodies not only
the fuctou f, but its two inverse functions as well (dep = fl(rctl,phys), and ret = f2(physdep)).
(The network as shown toes riot include tle links for f, and f2, but these are similar to those for f.)
Most of Section 5 is devoted to laying out networks that embody theories of parucUlar visual
consistency relauons.

The idea of modifiers is, in a sense, complementary to that or conjunctive connecuons. F~or
example, the network of Figure 13 could be transformed into tLhe rollowing network (Figure 14).

I'igure 14: An Alternate )epth Network.
In dos network the variables for physical size, depth, and reunal size are all given equal weight. For
example, physical size = 4 and depth = 1 make a conjunctive conmction with retinal size = 4.
Each of tile variables may also form a separate WIA network; hence rivalry for different depth
values can be settled via Inhibitory connectUons in the depth network.

To see how the conjuncuve connection strategy works in general, suppose a constraint relation
to be satisfied Inv)lves a variable x, e.g., flx,yz,w) = 0. For a particular value of x, there will be
triples of values of' y, z, and w that satisfy the relation f. Each of these triples hOlUld make a
conj ntiCvC ci actiUn with the unit reprcsentcrig the x-valhic. [hetre couId also be 3-inputl
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conjunctions at each value of y,z,w. lach of these four different kinds of conjunctve connections
corresponds to ani interpretation of the relation flx,y,zw) = 0 as a function, i.e., x = fl(y,z,w), y =

f2 (x,z,w), z = f3(x,y,w), or w = f4 (x,y,z). Of' course, these funcuons need not be single-valued. This
network connecuon pattern could be extended to more than four variables, but high numbers of
variables would tend to increase its sensitivity to noisy inputs. I linton has suggested a special
notation for the situation where a network exactly captures a consistency relation. The mutually
consistent values are all shown to be centrally linked (see Figure 15).

Figure 15: I linton's Notation.

When should a relation be implemented with modifiers and when should it be implemented
with conjunctive connections? A simple, non-rigorous answer to this question can be obtained by
exmiruning the size of two sets of units: (I) the number of uniLs that wotild have to be inhibited by
modifiers; and (2) the number of units that would have to be reinforced with conjnctive
connections. If (1) is larger than (2), then one shotild chxse modifiers; otherwise choose
conjunctive connecuons. Sometimes the choice is obviotis: to implement the brown Californian
grass example of' Figure 12 with conjunctive connections, one would have to reinforce all units
represenung places that had green grass! Clearly in this case it is easier to handle the exception
with modifiers. On the Other hand, the depth relation R(phy,dep,ret) is more cheaply implemented
with conjunctive connecUons.

In physical neurons, there is a feature that makes modifiers more powerful than our examples
suggest. Inhibitory connections can block inputs from entire dendritic subtrees, and this could
simplify certain networks.

Tie and Sequence

Connecuonist models do not initially appear to be well-suited to representing changes with
tnie. The network for computing some function can be made quite fa.st, but it will be fixed i1i
I'ilticuoialiIy. 'heie ale two tliiite different aspecLs of ume variabIlity ol co)nnectllonst structures to
discuss: long-term modification of the networks (through changing weights) and short-term changes
In the behavior f a fixed network with time. There are a number of biologically stggested
mechanisms For changing thc weight (wj) of synapuc connections, but none of them are nearly rapid
enough to accoUit for our abilty to hear, read, or speak. The ability to perceive a time-varying
signal like speech or to integrate the images from successive fixations must be achieved (according
to our dognia) by some dynamic (electrical) activity in the networks.

As usual, we will present computational solutions to these problems that appear to be consistent
with known structural and performance constraints. Ihese are, again, too crude to be taken literally
but do suggest that connectionist models can describe the phenomena. As a first example, consider
the problem of controlling a simple physical motion, such as throwing a ball. It is not hard to
imagine that for a skilled motor performance we have a fixed seqtence of unit-groups that fire each
other in succession, leading to the mnotor sequence. The computational problem is that there is a
uique set of effector ItiiLS (say at the spinal level) that must receive inpLt from1 each group at the
right time.

Itgure 16: A Simple Sequencer Using Modifiers.

Figure 16 depicts a situation where two effectors, e1 and e2, get activty from four SeluenUal
groups of three units each. At odd intervals, the middle layer masks the tipper connections, and at
even intervals, the lower. We assutme that each column gets activated synchronously and in order.
'I lhe main point is that a succession of outptLs t) t single effector set can be mO(elled as a sutltieIce
off Lime-exclusive groups representing insUintaneous coordinated signals. Moving from one time step
to the next could be controlled by pure uming, or (more realistically In maiiy cases) by a
propriomeptive feedback signal. There is, of course, an enormous amount more than this to motor
control, and realistic models would have to mnodel force control, ballistic muivements, gravity
compensation, etc.
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The sequencer model fi'r skilled iovemenLs was greatly simplified by tire assumption that the
SequIeIneL of acivitLiCS was pre-wired. I low could we (still clutlJey, of course) model a situaton like
speech perception where (here is a largely unpre(dictable Lime-varying computaiUon to be carried out.
The Idea here Is to comlbine the Sequencer model of ligure 16 with a simple vision-like scheme.
We assume that speech Is recognujed by being sequenced into a buffer of about the length of a
phrase and then is relaxed against context in the way described above 'or vision. lor simplicity, we
will assume that there are two idenUcal buffers, each having a pervasive modifier (in) innervation

so that either one can be switched into or out or iLts connections. We are particularly concerned with
the process of' going from a sequence of potenual phonemes Into an interpreted phrase. Iigure 17
gives an idea of how this might happen.

ligure 17: A I1henene Sequence BffIer.

We assume that there is a separate Unit for each potenual phoneme for each Ume step up to
the length of the buffer. 'The network which analyzes sound is connected Identically to each column,
but conjLncLLiOn allows only the connections to the acuve column to transmit values. Under Ideal
cirCtilmstatnces, at each ume step exactly one phoneme unit would be active. A phrase woultd then be
layed out on the buffer like an Image on the "mind's eye," and the analogous kind of relaxation
cones involving morphemes, words, etc., could be brought to bear. The more realistic case where
sounds are locally ambiguous presents no additional problems. We asstime that, at each time step,
te various competing phonemes get varying activation. )iphone constraints could be captured by
(+ or -) links to tie next column as suggested by l.igure 17. We are now left with a multiple
possibility relaxation problem--again exactly like that in visual perception. The fact that each
potential phoneme could he assigned a row of units Is essential to tis soltiion: we do not know
how to make an analogous model for a seLLence of sounds which cannot be clearly categorized antI
combined. Recall that tie purpose of this example is to indicate how ume-varying input could be
treated in connecttinist models. The problem 0if actUally laying otit detailed models for language
skills is enormoLs and oUr example may or may not be useful in its current form. Some of the
considerations that arise in distributed modeling of language skills are presented in lArbib and
Caplan, 19791.

Colserving (oniiections

It is currently Csin/IaLUL that there are iabOLIL 10 netirons and 1015 cOnnections in the hUrman
brain and that each neuron receives inptit from aboit 103- I0'4 other neurons. 'i hese numtbers are
qiute large, but not so large as to present no problems for connectionist theories. It is also important
to remember that neurons are not switching devices; .the same signal is propagated along all of the
outgoing branches. I:or example, suppose some model called for a separate, dedicated path between
all pussible pailis of units iii two layers of size N. It is easy to show that this requires N2

Intermediate sitcs. This means, for example, that there are not enotigh neurons in tile brain to
providUe such a cross-bar switch for layers of a million clencnts each. Similarly, there are not
enotigh nieutons toi provide one to represent each complex concept at every position, orientation,
and scale of visual space. Although the development of connecuonist models is in its perinatal
period, we have been able to actimulate a number of iteas on how sonic of tile required
coriptItitlonS Call be carried out Without excessive resouTLrce reqLrCments. I wo of the most
Important iojf these are describhetd below. A third Important idea is that of seqte .|ning, but that will
be deferred to Seclon 5 in order to develop It In the context of a detailed exalluple from vision.

l'ixed Resolulioti Co|it|ialion

In thie multlphcation example of I igure 10 it mnight seem that NxNy iInis are required to
implement this simple funcuon and that in general the number of units would grow exponentially
with the number of argunments. I However, there are several refinements which carn drastically reduce
the number of required units. I hie principal way to do lis is to fix the numleter of Units at tie
resolution re(uired for the comnpuution. ligure IS shows the network 01' Figure 10 nuodilied when
less computational accuracy is reqlreCld.

4i

VI
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l'igure 18: Modified Table Using less Units.

When the number of variables in the function become.S large, it might seem that the fan-in or
number of inptL connecuons might become unrealistically large. For example, with the function z
- f(u,vwxy,z) implemented with 100 values of 1, when each of ILS arguments can have 100 istinct
valLCs, would Icqtuire an average nutmber of inputs per Unit of 1012/,02, or 1010! Ilowever, there
are simple ways of trading units for connections. One is to replicate the number of LniLs with each
value. ']'his is a good solution when the inputs can be partiuonetl iii some natural way as in the
vision example4 in tie next sectLoii. Another Is to tise intermediate tniLt, when the computation can
be decomposed in some way. For example, if f1uv,w,x,y,z) = g(u,v)o h(w,x,y,z), where o is some
CotlipcOItiL)i, then separate tables for f(gh), g(u.v), and h(w,x,yi) can be used. The otitputs from
the g and h Lables can I)e c)mbined in conjuncLIve connecuons according to the compositioi
operator 0 via a third table to produce F. In percptLion the transition From u,v.w,x.y,z to gbh ,o f
corresponds to changes in level of abstraction.

Low Iesolution Grain

Suppose we have a set of units to represent a vector parameter v composed of components (rs).
Suppose that the number of units re(liired to represent the subspace r is N, and that required to
represent s is Ns iheni the ntiLmber of units reqtured to represent v is NrN S. It is easy to constrlct

examples in vision where the product NrNs is too close to the tipper bound of 1011 units to be
realisuc. Consider the case of trihedral vertices, an important visual cue. Three angles and two
position coordinates are necessary to Uniquely define every possible trnhedral vertex. If we use 5
degree angle sensitivity and 105 spatial sample points, the number of Units is given by Nr 5x 103

and NS  105 or 5x 108! Ilow can we achieve the reqtured representauon accuracy with less Units?

In many instances, we can take advantage of the fact that the actual occurrence of parameters is
h/w density. What we mean by this in terms of triliedral vertices is that in an image, such vertices
will rarely occilr In tight spatial clusters. (If they i0, one cannot resolve dcm as individuals
simultanCously.) I lowever, even though simttl1tncOus proximal values of parameters are unlikely,
dlCy still can be represented atccUratcly tbr uicr coruputatiotis.

Flhe solton is to decompose the space (r,s) iuo two subspaces, each witLh itilaterally reduced
resolution.

Instead of NrNS units, we represent v with two spaces, one with N ,. Ns units
where Nr,<«Nr and another with NrNs, units where N,,<<N, .

TO illistrate this technique with the example of trihedral verUccs we choose N , = 0.0IN s and
Nr = 0.01N TIhus the dimensions of the two sets of units are:

Ns Nr = 5x10 6

NsNr , = 5x106.

The choices mean that we have one type of unit which accurately reprcsents tle ang!e
measturements and fires for any trihedral vertex in a given vistial region, and anotder set of units
which fire only if a vertex is present at the precise position. lIgUre 19 shows the two cases.

.igUre 19: FuzZy Resoluton [rick.

If te vertex enters into another rclation, say R(va), wheic both its angle and position are
required accurately, one Simply conjuncuvely connecItS pairs (if appropriate un l s from each of the
reduced resoluton ,paces to appropriate atinItS. [he conjtonctiVe connection represents the
intrsection of each of Its components' fields.
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This resolution d(IC is aS vaitl of a general rvSuIj due [V) VIMMOD, 1980): naxnely, that
conflectiofls from overlapping Sets of units can prttLICC fine resolution with leSS tini1ts. An impotUnt
limitation of this technique, however, is that the input must be Sparse. ir inputs are too closely
spaced, "ghost" firings will occur (F igure 20). Another point is thalt the reSi lUtiof device is
essentially a uinits/connections tradeoff, but aS the brain has many more synapses than nieurons, the
tradeoff IS attractive.

Figure 20: "Ghost F'irings.
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5. S.ne hniications for I'.urly Visual l'rocussign

Ald-hough early Visual processing appears to be particularly well-suited for connectionist
tleat.mcnL, there are a nubfler of serious problems. Some of these arise from dhe limmenSe SiZe of
the cross prodlct Of the spatial dimensions with those of other inmtrustung features such as color,
velocity, and texture. I'hus to explain how image-hke input such as color and opucal flow are
related to abstract olbjects such as "a blue, fast-moving thing," It becomes necessary to use all the
techniqutes 01' he previous sctions. We will work through an example in detail and show a sohluion
which uses realiUc 1Lmbers of uLits, connections, and connections per unit. The mnailn trap to avoid

is a solnuon that requires Xfk Units where X is the spatial dimension, f is the number of
mUaSurement values per modality (color, distance, velocity, etc.), and k is the number of modalities.

The above example omnits the details of tle transformation involved in relating image-like
features, like primary color measurements, to a percept, like "blue." lo remedy this dufficiency, we
will work through a second example, the calctauon of shape from shading, which emphasizes this
kind of transfbmauon.

Objects

The visual field contains objects that are disjoint. This separateness is manifest in groups of
spaually rcgiste:rcd features such as texture and color which distingulsh the objects. Thus we regard
the problem of detecung an object as a matter of determining which of several possible features of
color, texture, mouon, and shape it has. In fact we can view thesee features as having ranges of
associated parameter valies. I"or example, an Object could be dcscrihed as having the properties
"fast" and "lue." The quotes signify that the property is not a singe value hut incorporates an
appropriate range of values. [he property "blue" might be any of a set of primary red, green, and
IlC valIeS, each Of which satisfies some relationship li(r,g,b) which defines the percept "bloe." In
a one-duniesional retua, we might imagine arrays of spabially rq'Istered color sensors, each
appropriately conncted to a property LIIt, as shown in Figure 21

Figure 21: Feature .feastirerent:
A Unit whuch Responds to a Range of lMluc.

lFigure 21 shows two kinds of units: a property unit and spatially-registered sensor units. The sensor
uLtIL represent five different values of each of three parts of the coLor SpctUum. In oLr primltivC
design, a property unit has a high potenual value (= 1) if any of the spatial sensor L1t1S for that
meurcmeNllt Value have a high potential, i.e.,

Blue (- ANI)(X) IIlue(X)

The non-spatially registered units represent ranges of feature valuies, e.g. the property "blue,"
Objects can be described in terms of combinations of thlese properties. The property units, in turn,
receive inputs from grotips of spatially registered primary color unit measuremenes. I lere we take
advantage of the disjunctive nature of different groups of inputs to dlfferenuate between different
parts of space. The number of connections to a property unit can always be reduced by replicauig
the property unit and connecting the replicated unit's outputs to a single property unit.

N, Timing
In Fuc 21 the "blue" tLiLt will respond to any values of primary Inputs in the appropriate

ranges of "blue." [his can make It s usceptible to noise; for example, consider the case where the
object has some specific valtie of "blue" in the appropriate range and there are also random similar
values of "blue" at other image points. One way of ruling Out these extraneous vauhes !s to Iiutn dic
"blue" unit to respond to only the appropriate set of primary color measurumCnts. Ihis is done by
using a fine-grained sUt of pcrceptual color tinIts. Within this set there are many ou(s
corresponding to colors in the range defined by "llU" (although only one is drawn i I igure 221.
'[tini ng the "bltie" unit is accomphsh ec by conjtincuvely connecting the appropriate color unLs to
their corresponding values of primary meastirements at the "blIC" o:nt inputs. I i is s shown In
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ligure 22. The fio-tuned blue unit receives input from all parts of space and sums its input. By
firing only Lilt: appropriate line-grain color unit, the "blue" unit is mthe to respond to only the
corresponding set of Its activated inputs. Note that this is an insunce of the general tuning method
(discussed in Section 4).

Figure 22: Tuning the "Blue" Unit with a Precise Value Unit.

A problem aisL., in the simple circuit of Figure 21 when the visual input contains more than
one object, that is, more than one group of spatially registered features. '['he simple network of
F'igure 22 cannot detect the spatial distinctness of the two groups. To make this problem more
concrete, let us consider two spatially distinct items, one blue (13) and fast (F) and ie other red (R)
and textured (1). In the simple network we must expect all feature units have a high potential, i.e..
13, T, R, and F, and there is no grouping of the two appropriate pairs, IF and RT1. This is an
instance of the general problem of inulti-atttIbte concepts which has been viewed as a major
obstacle to coninictiOiiist schemes.

One solution to tis is to elaborate all 131(X) units, but this poses two problems. First, there
are a large number of units, i.e., (Nm) 2 Nx where NM is the number of feaiUre groups and N x is
the spaual qtantification. For die retina (even the fovea) this number becomes unrealistically large.
A soluuon is to allow pairs of coarse-grained property units which stil do not use the spatial
registration explicitly. In ligire 23 we show the circLit for a I[: cell which assumes a high potential
only it its inputs from sensor units are spatially registered. lbis is done by making spatially
registered units have conjtincuve connections. That is, appropriate values of color at x = 7 and
velocity at x = 7 Would make a conjtincuve connection, but appropriate values that were not
spaually ,egistered WOuld not. Of course, the IHF tinit might have to normalize its input in the
maniner of Section 2, if there were many visual features present. Note that the velocity measurement
portion of thieC network is not drawn but that it is nearly identical. Velocity sensois are connected to
inc-grained velocity units in the same way as color sensors are connected to fine-grained color
units. Models for the various parts of vClocity-sensiuve networks have been explored by IIlorn and
Schtinck, 1980; Barnard and Thompson, 1979; and Ballard, 1991cl.

Figure 23: A JIF Unit Detects the Existence
of Spatially Registered "Blue" and "Fast" Percepts.

)espite all these ways of economizing, it is still combinatorically implausible to have complex
cells such as 1$ lRM(...). lowever, there is a way arotnd this problem using nitltLiple connections
from object units. :\ hluc-teXttired-fast (1'FI) object unit can be synthesized frori III' and Ill urnts,
i.e., BT1 & III" => BI'. What the Z > symbol means is that the implication is not guaranteed, but
very ikdv, given that the HI: and 3T units are tuned. The BI and IT units detect spauial
registrauon directly via connections like those in Figure 23, but the Bf'I" unit does not. We are
saying essentially that, in general, simple (here, pairwise) conjunctions can be kept spatially
registered by conjluncuve connections, and that more complex property combinations can be
synthesized 0rom them. Complex combinations that are important to an individual are prestmed to
have new unLts recruited l.eldman, 1980; 19811 to represent them explicitly.

Sequencing

One n1ught imagine that de network in Figure 23 is adequate and that given visual input, it
will converge to appropriate potential values. 1However, there is an easy way to sue that, in general,
this will not happen for all percepts. First consider the fine-grained set of feature values in ligtire
22. Since umits In this network receive inputs from all parts of space, cliffusely valued spatial points
can easily uobscure a set of coniguious spatial points with a single value. For example, mouon from
other parts of space can obscure the motion of a particular object (in feature space). Another way to
understand this is to suppose a set a features formed a single, muiltI-imcnsional space. In this space
objects ;Ire clear, but because Of the unormotus size of the space, :t must be represented with
di lerent proj ecuoiIs. [he p i ojectios are the familiar subspaces o color, velocity. etc.

NOE
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'there is a way to use the subspaces to caumse the appropriate percepts to lire by building
COnjUnctions of' feattures i ri a sequential iariner. This circumnt1IS .he basic prolrerni deScn b~ed
abOve. Toi develop the seqtienutal soluition, we it rod uice spatial un rits, such as those stiown Ill Figuire
24. There IS a spltlial uit, for each spatial position and each 1 ntr: 'isC paramieter (e.g. color).

F igutre 24: A Blue-lst UitI Showinrg
Spatial Context. Unit.

Spatial Units receive iflptit frloml percept r LIS, featurle uru11LS, arid Sensors. 11' all thiree of' these
are p resenlt, the MIiL tWill adjust. the potenilS Of aIll Of' the Seno IISI oLS upwards. We aIssume mat'I
uipper anrd lower boo rid ti III L Will adjUiSt the potetialMs of the eniti re sensor network . I hie net resti It
will be that spatial sensor Units not. rceLiving appropriate input. wi I! havv no effect on 9he property
tIrILts.

Wit~h respect to Figure 24, We sulggest the following sceniario for a "hitie," "fast-moving"
"horizorital" Stirface, where blue Stands outL in the color featiLre space, but CaISt-movi rig and
horizontal do ri inO tl heir respective feature spaces. Fi rst, the bltte Percept L nit cause:s IpUt 1f10111
bilue Valued spatial posi toris to be favored. Under this restriction, Onie Of the Other feattires is now
distinct, further raisi rig the potential of active sensor cells at those positions. The efTCCt is as if a
blue filter were placed Ii Irorit. of the Sensory inputL. Now the third feaZttire is detected. At. this point
due colmposite net~work IndiUficaeS that. there is a bl, "i Ls-movirIlg. horvion tl biirfaIc Inl the viStial
Iheld at the psiuon speCLified by high -con fidenrce spatial unIits.

Quir NOftItIIoli to die problem Of detecting spatilly-registered featti IS iot uniqule btit does
require otich less than xfkUnits. Tab~le 2 suImmariZes the Connection arid tit req urirememis Ii
tWrnlis of' spatial culol"~eXI ty estimnates.

Fable 2

k niibe Of modalities

X =nuirhe of distinct, spatial valueCs
4.I IM M timb ' of istiCt fulzzy" feat tres/nlodah tY

I nun d ihCr 01f (1 1 t Ii t ie- rsO!LuL0 tIor atirus/niodah'y

No. of Connlrections/ conntects 10
Ui Ili Ilype Ulnits Unit Units of Type

Sensors (S) kXf* 17ffC

F le-famres (ff) kf X FF,

1 "LL 'ZleaturCN (FU') IX(f/]')2 C

Spaial (C) kXI:i. S, r

Motor Conlol (i f the Eye

To see how Uris iii to inl of distribuited objects ight work in Motor control, we offer a simphistic
mode ofv egerce ye iiovriincs (Iie ame ie may be valid Ifo ixatioris, but control probably

Likes p lace alt hiig her levels of abstractionl. In this . !Iodel retinopic (Spatial) urnits vie conitect
dlirectl y to r IIII%,e ccIIiH ti iI mnu. Fillh retinotiipic uit. canl 11' satUraed caIu dhe appropriate

p crOHIiracto i s thatic ew eyeW posl()ition :S cered on that tirit. When several reunottipic Units
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saturate, each enables at muscle COMMro unit1 I ndependeritly arid die flLiSC~e itsclf con~ttrats an average

Figure 2i shows the idea for at one-dimensional retina. For example, With urLIS at positions 2,
4, 5, alld 6 Saturated, the Inet reSult IS that the muLSCle is centered at. 17/4 or 4.25. This idea Can tbe
extendted It We assumelI ,he renurOMpic unItLS have Overlapping fieldS Such1 as thIose used ty 1111i11,11
19801. lus kind of urg-ani/ation is Consistent with stu~dies Of the organliZation of the StiperOr
Co1lULItlS in the monkey Iurti and Albano, 19801.

igtire 25: DistributeLd Control of Eye lixatins.

Notice that each retII nopic Unit is Capable of enabling tdifferent. muIscle control tini L. The
appropriate une i!; determined by die eniabled x-origr n tini Wich Inhibits corimandS to dIe:
inappropriate contrfol Units via modifi~ers.

One problem with this simple network arises when disparate groups of reunotopic tinits are
saturated. The prceent c01tfigLiration Can Send the eye tO an1 average posiuon if the features are truly
Identical. Also, die network can lbe modified With additional connections so that only a single
Connected Component of saltrated units is enabled by tisitig additional object primitives. A version
Of this motor control Idea has already been Used in a computer model of the frog tectum Jl~idday,
19701.

[here are still niany details to be Worked Out, befoire this could be considered a realistic; model
of verEcL Cointrol, buit It does illuIstrate the basic Idea: local Spatially separate Sensors have distiictr,
active MinnectiolNS which could be averaged at the muIscle for fine motor Control.

S hapte fromn S ha di ig

[in a previous sub-section we showed how spatially distributed inOrmaooii1 could be: conIntedt:
to a global obJCt tirut. I here tie issue was primarily onec of feasibility. With it simple model, there
were large numbers ()f global Iciuttites, Yet it was possible to detect theml all. Relaucirships between
triage- like Inptits anid features were assumed but not Stressed. In this Section we presenlt an example

of Stich relations by showing at network whichi comiptites stir lace orientation from anl Intensity array.

[hle Specific example we will use is that. of shape-fromn-shading. It is well-known that given die
4b orientaic0ri of' a1 surface With respect to a viewer, Its reflctance properties and the location of a

Single light. source, that. the brightniess at a point Of' the viewer's retina can be determined. That is,
the reflectance futirion R(0,) - ()A where 0,(I antI SA arc orientationis oh the surfaceL antI
SoLtre respctively, allows LIS to determine I( x,y), the normalited Intensity III termis of' retinal
Coordinates. Holwever, die percepttial problem is the reverse: given l(x~y) arid R(_),. determuine
OMxy),(XY) and SP'

InI general, the problem of deriving O(x~y),4( x,y) and O0, tl, is tinderdetermined. H owever,
Iketichi I1901 sho(Wed that the htirface cutild be deterrinred locally once Oyf was specifietd. Ihis
meth~iod ha% been extIudcI al ilard, 19,1 bI '0 the case where 0,PS2 is iIILH Ui ill inknown.

The lo ridm ir s otldi ned as follows. [or at Single light source, the intensity at( a Point onI a
retina can lie decsu.ibed in terms of the orientaton of the normal irf the corresponding, surface point
and the stirfacc orientaton. [hat, is, in Spherical coordinates,

I(X,y) = IR(()( 0 (I) (FrI. 5.1)
where thec angle-, () Mnd (P are functions of x and v. The viewer is asstimed to be looking dlown the
t axis (towards its uigin) under ordionorrual vic ewinrg condi tiuis. 0, I>. Os, and 1P5 -ire Spherical
angles measured with re:spct to this frame. Now by miinizinrg (I - R)2 and( appeniing a
sn'oxdi ness constrint onl I) arnd 'tP we have INUIkci.I 19, an expression for the local error (if the
esunri1ate for () ind~ 4) is 1uinreiiatil) a1,1-1()s
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I~x,y) = (I-R)'- + X((V 2o)2 +(V 2 (p)
where X is a L agranige Multiplier. I-or a minimu.11, F0 and 0. Skipping soie steps, this leadS
to

O(X,y) = O0 C(X.Y) +'U'(X,y) It ([aq. 5.2a)
t1)(X,y) = (P (Tkj. +~xyR~) 5.21))

where

(Vv~~)is a local average

T(x~y) =(l/16X)(l-R)

In solving these e(lations. ON and (Pare a.ssumned to be known. Ikucl(hi u.sed a parall1el-iteriUve
mfethod where thle (Pav aid O~ave are calcuilated fromr a previouIs iteration.

To calculate Osand (PSI We assume 0 and (P are known and use a I ough techiqueLI. First We
form an array A10(P.15 of possible valties of 0, and (0 initmahted to zero. Now we can Solve the
I amberuani reflectance equation for (0,. The H ough techniqtie works as follo~ws. F-or each stirface
element 0,(P, a!nd fur each 0, we calculate all (0 Oiat satisfy Eql. 5.! antI increment AKI) 51.I i.e.,
A105'15il :.= At0s,(Psj+ 1. After all sturface elements have been processed, the maximumi value of A
corresponds to the location of the point Source. In [Ballard, 19811h] it IN shOWn that cal1culation of
the source locauoin can proceed in parallel With that Of O(X,y) and 'T~x,y) and that the two
Calculations will converge.

ImpIIlementiationf ini Networks

'The above decscription of the shape-from-shading is geared to imiplementation on a conventional
computer. We now de~scribe how these coinpttauons can be rcaliued with conneCtions betweenl

I' inetwoirks of' basic Units. I lie general Strategy is IS fIbllOWS. Variables in the aboVe eqUitiuns are
repieseiitect by 11etworks Of unis Where each unit has a discrete valuec. T[he cotiticons between
Vltme-iMIitS muIst be Made In -Such a way that the networks convvige to a1 Set of' vaIlue-un1its that have
Potential eqjual to tinity. these units wkll represent a parUcular soIlution for the Inpul)t intensity
distrib1uon1.

T[he sbape-froin'shadi ug calcutifons can be decomposed into two principal networks. One
represents the huilmace o~ri entations at retial poiniits and the other represets Pu)iliItuiination
angles. 'Thus there is a { 0 , y),( x0,y)1-network and a J( S.I)) network. In addil.ion, input vaIlus
of* I(x,y) are assumied. TIhe ()(X,y) sub-network is represented by tinits each repiesenting a specific
Value Of 0) at a partiuLLl PointL X,y. '[ius representation requires NON.N y tinits. A'SsuLming NX

N 7and No - 25 the reqluirement is for 29or < t06mnits. '11w illumnination angle network
uses tiniits to repieset 1)(103 Of' Valtues, one for 0S and one for 'The li reason fur this choice will
be disctussed miomentarily.

With these provisos we describe the connections btwcen networks that comipute shape from
shading in two parts. The First part describes coninections from the f0(01' netwiiik to the network
that detects illunnatin dirction. 11w scond Part tdescribes the connections in the other directi.
I-'or every posm ton x,y and for each valtie of 0, (1), and I at tha1t posiL1bun. the appioilriate values of

0,an , hih atisfy R Icntcprecaiculated. MS0,, triples, e1hrepresenting itspecific
value, make con1Junctive connectiUon7s With 0S, Dstinits. F-igure 26 shows a repreSemitituve conMIeCtioi.

F-ugure 26: A Portion of the Connections
Used to Ietect Iltimunation Angle.
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The Os.4,S units are summation units. Hach O,.P unit sums the number of 1,0(,I input triples

that are firing and their potenuialS are proporuonl to tils suM. 1he proportionality conStant may be
known from physical considerations or may be adjusted by Lipper and lower bound unitS like those
described in Section 2. The Ost S unit with the highest potentoal is the one that is consistent with

the maximum number of' 1)t0 } and I units.
TWO important considerations effect the design of the {(Os( 1 )1 network. One is the need for

good discrimination in the valtes of' 0S and s ThiJs led to the decision to use (Os,4s) plurs as

units instead of O and 1)5 units. In the latter case, solutions to the constraint relation that satisfied

pairs of (Osq5) values may be obscured in the urnthvrdtial 0 anti ,5 networks owing to the

reduced dimensionality. The second consideration is the average number of connections per unit.

With 26 values for OS and (I)S, there must be 212 units in the 1(Os('s)} network. An Lipper bound

on the number of connections to this network from the {(OcP)j network can be determined from

straightforward counting arguments. At each point x,y there are NoN (Nl combinations. or 215

With NxNy = 214, this leads to 229 or 109 total connctuons. 'Ihus the average number of

Connections per (0SP S) unit is 229/212 or 217 = 3x,05. If this is unreasonably large, a simple

solution is to Use auxilliary Os(DS units, which sum subsets of the inputLS to a 0(1) , Unit. The (1)S

unit then sums the outputs of the auxilliary units.

For the second part we consider connections from the j(O, 5)1 network to the 10.(D network

needed to realize the constraint of Elquations 5.2a and 1). We will only consider the first equation
(since the second is treated similarly). [his represents a constraint g(',,avlO ,O.s 5(AS) = 0. Given

values lor these variables we can determine R(0,4'., 5,As5 ) and R() to see whether or not Equation

5.2a is sausfied. I'tis a straightforward application of our technique woild use conjunctive
contiectiois in groups of nine, as shown in Figure 27. ['or a particular 0 value we examine all the
combinations of valuCs for the other variables and connect the SIi)set that sausfies I.luation 5.2a to
the 0-unit.

Figure 27: Alternate Connecuon Schemnes
for Computing Surface OrienuiLon.

lhre we have Used four nearby values of 0 to computie (ave' 'lbs ifplementation Is unsatisfactory

for two reasons: (1) tile large number of inputs in the conjluncuve connections would be noise-
sensitive: and (2) there wouid be an unrealistically large number of connections on any one unit. To
solve both of these probleis we ise (ave units fbr each O(xy). While this only doubles the

numnber of units in die {0,,} network, it drastically reduces the number of connections to an
individual O-unit. Assuminrig our earlier figures, this number is

NON 0 aveNN, NosN ps or 230 = 109.

This number is sill very large, but can be further reduced by further unit/connection
tradeoffs.

The 1itroducon of the ()ave tnit to reduce connections represents a different kind of tradeoff

from the simpler tradenff used to handle high density connections in the illmination angle
network. A specificL value of Oave may be produced by several different combinations of' nearoy

O's. Each of these grotips of O's makes a cornjunctive connection With tile Oav, unit. I lowever,

since we expect a unique valte of )(x,yj, the LIMt behaves differently than dat iii the ifluimnati (n
angle network. Rather than sum its Inputs, each 0 ave unit adjusts Its poterial based on the

maximum of its conjmtuve groups.

I!
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Othier Networks lDeterinine Bunidary Condiuiongs

The unit outlin11 for shape from shading Calculations does not include a discussion of boundary
conditions. These can be 0Cluled from oither networks such as a disparity network. For example.
d1C eX)Steice Of al depth discoDnuilly d( X,y) In the disparity fletWolk Could 11l1u1)t conne71coUnS
between the 0 and (t) eidier side of the diSCOnlintlity. In general, SUCh netLWoiks will interact in
many different ways to determine boundary condiuons Iflarrow and lenenbaum, 19781. Much
additinal work needs to be doneC to Specify these Interacuons MOre Precisely.

Conclusions

We have now Com1pleted Five years of intensive effort on the development of connectiolist
models and their applcauoo1 to the description of complex tasks. Whiec we have only touched the
Surface, thie results to date are very encouraging. Somewhat to Our Witrprise, we have yet to
encotunter a challenge to the basic flormulation. Our atcCMPLS to model in detail particular
comptitations ISabbah, 1981*, Ballard and Sabbah, 19M I have led to a number of new insights (for
uis, at least) into0 these specific tasks. Attempts like this one to formulate and solve general
comptittial11 problems in realistic connecUonlst. termis have proven to be diffictilt. but less SO than
we would have guessed. Fhere appear to be a numl1ber Of Interesting technical problems within the
theory and a wide ralnge Of (qtieSLons about brains and behavior which might benefit from anl
approach along the lines suggested in this report.
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Aplpendix: Stunina ry or! )e finit ions and NotI ationt

A unit is a computnuoaL011 entity comprising:

j(1-- a set of' discrete states, < 10

p a coflUntiOLus vaLIC in f-11,called potential (accuracy of 10 digits)
V -- an output value, integers 0 < v < 9

-- a vector of in'PutS 11..

and functions from old to new Valties of these

p <- qi~p.(q)
q <(- g(i,p,q)
v <- h(i,p,qI)

which We aSSu~me, for now, to Compute contInuIoLsly. The form of the f, g, arid h1 functions will
Vary, bitt will generally be restricted to conditionals and functionIS Found onl hand Calculatois.

For some applications, We Will Use a particularly simple kind of unit whose ou~tpLIt V IS
proportional to its potential p (rounded) and which has only One State. InI other words

P(<- P +/I1:k <i p 11
V= ap - 0 IV = 0 ... 91
where /1, at, 0 are constants

Connection T'ables

In additon to graphical notation, the outgoing c;onnections to other tinits can be described in
tabular forml. Each outigoing vj (only one for basic toutIs) will have a set of entries of the formn

((rece:iving uit>.()index>.( ±),(ype>)

Where anly o1f tie last three constructs canl be oittfed and given its tiefaLlt value. [he <±> Field
specifies wtiether the linuk IS excitatory ( +) or inhibitory (-) and def"'iiIts LC) +. The <index> is the
inpILit in~deX in II at the receiving endl. Ihis Index can be Usetd for specif'ying different weights.
IndeIxed Inputs alsoL allow for functionally different tise of variouIs inputLs and many Of' our examples
xploit tIS feature. T he (type> IS cither normal. modifier (in), or learning (x), the (fefalit belig

nun ma 1.

Conjunctive Connections

In terms of our formalism, this cotild be described in a variety of ways. One of 1he simplest is
to definle the potential inI terms of the maximumI, e.g.,

p <- p +s Max(i 1+ij, i 3 +[ 4 , 15 +16 -17 )

TIhe max-of-sum unit is the conuiLous analog of a logical OR-of-AN!) (disjunctive normal
form) uItL anid We Will Sometunles Use the latter as an approximate version of the former. The OR-
of-AN!) uitI ctrresporiding to the above is:

P <- P + a OR (i 1&12 , '3&14 , i5&i6&(nO 17)

Witiner-take-all (WTA) networks have the property that only the unit with the highest potential
* (among a set of' contenders) will have output above zero after some Settliing time.

A coalition will be called Stable when the outptit of all of its memnbers is non-decreasing.
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